Plant Transcription Factor Database
Previous version: v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G24260.3
Common NameAGL9, SEP3
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Protein Properties Length: 237aa    MW: 27322.9 Da    PI: 7.4968
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G24260.3genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 79***********************************************96 PP

        K-box  16 slqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkeke 86 
                  s+qqe+ kLk++++ Lqr+qR+llGedL++Ls keL++Le+qL++slk+iR+ +++++l+q+++lq k  +
                  68****************************************************************99765 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004321.3E-41160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006633.515161IPR002100Transcription factor, MADS-box
SuperFamilySSF554551.29E-33276IPR002100Transcription factor, MADS-box
CDDcd002651.72E-45276No hitNo description
PRINTSPR004048.2E-33323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003192.2E-261057IPR002100Transcription factor, MADS-box
PRINTSPR004048.2E-332338IPR002100Transcription factor, MADS-box
PRINTSPR004048.2E-333859IPR002100Transcription factor, MADS-box
PROSITE profilePS5129713.76191193IPR002487Transcription factor, K-box
PfamPF014865.3E-2294160IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0001708Biological Processcell fate specification
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010093Biological Processspecification of floral organ identity
GO:0048481Biological Processplant ovule development
GO:0048833Biological Processspecification of floral organ number
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000229anatomyflower meristem
PO:0000293anatomyguard cell
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 237 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ox0_D1e-5375160186Developmental protein SEPALLATA 3
4ox0_C1e-5375160186Developmental protein SEPALLATA 3
4ox0_B1e-5375160186Developmental protein SEPALLATA 3
4ox0_A1e-5375160186Developmental protein SEPALLATA 3
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.240860.0bud| flower| inflorescence| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G24260-
Functional Description ? help Back to Top
Source Description
TAIRMember of the MADs box transcription factor family. SEP3 is redundant with SEP1 and 2. Flowers of SEP1/2/3 triple mutants show a conversion of petals and stamens to sepals.SEP3 forms heterotetrameric complexes with other MADS box family members and binds to the CArG box motif.
Function -- GeneRIF ? help Back to Top
  1. In order to uncover new roles of SEP3 we studied in detail the phenotypes produced by 35S::SEP3 in different wild type and mutant backgrounds.
    [PMID: 16098111]
  2. These experiments indicate that the ectopic co-expression of SEPALLATA3 and SHATTERPROOF1 and/or SEEDSTICK is probably not sufficient to homeotically transform vegetative tissues into carpels with ovules.
    [PMID: 16515858]
  3. Evidence that in vitro homotetramers of the class E floral homeotic protein SEPALLATA3 from Arabidopsis thaliana bind cooperatively to two sequence elements termed 'CArG boxes' in a phase-dependent manner involving DNA looping.
    [PMID: 19033361]
  4. higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and SEP3 'glue' protein plays a pivotal role in mediating multimerization
    [PMID: 19243611]
  5. SEPALLATA3 integrates and modulates different growth-related and hormonal pathways in a combinatorial fashion with other MADS-box proteins and possibly with non-MADS transcription factors.
    [PMID: 19385720]
  6. The SWI2/SNF2 ATPases physically interact with two direct transcriptional activators of class B and class C gene expression, LEAFY (LFY) and SEPALLATA3 (SEP3).
    [PMID: 22323601]
  7. Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF
    [PMID: 22363474]
  8. Approximately 90% of the binding sites of two well-characterized MADS domain transcription factors, APETALA1 and SEPALLATA3, were covered by the DNase I hypersensitive (DH) sites.
    [PMID: 22773751]
  9. Here, we show that SEP3 as a downstream gene of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and FT modulates the flowering time in response to different ambient temperatures.
    [PMID: 22899051]
  10. Data indicate that SEEDSTICK (STK) and SEPALLATA3 (SEP3) dimers can induce loop formation in the VERDANDI (VDD) promoter by binding to two nearby CC(A/T)6GG (CArG) boxes essential for promoter activity.
    [PMID: 23847151]
  11. SEP3 is a member of the MADS transcription factor family and plays a role in the development of the floral organs through the formation of multiprotein complexes with other MADS-family transcription factors.
    [PMID: 23989147]
  12. The 2.5-A crystal structure of a small portion of the intervening and the complete keratin-like domain of SEP3, is reported.
    [PMID: 25228343]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G22540 (R), AT2G45660 (R), AT4G09960 (A), AT4G18960 (A), AT4G24470 (A), AT4G24540 (R), AT4G27330 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G69120(R), AT2G17950(R), AT2G22540(R), AT3G54340(A), AT4G18960(A), AT4G24540(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69120AP1 interacts with SEP3.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G24260, AT1G26310, AT1G69120
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G24260
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankBT0331570.0BT033157.1 Arabidopsis thaliana unknown protein (At1g24260) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001185081.11e-176MADs box transcription factor SEPALLATA3
SwissprotO224561e-166SEP3_ARATH; Developmental protein SEPALLATA 3
TrEMBLF4I9721e-176F4I972_ARATH; MADs box transcription factor SEPALLATA3
STRINGfgenesh2_kg.1__2877__AT1G24260.11e-165(Arabidopsis lyrata)
Publications ? help Back to Top
  1. Shinozuka Y, et al.
    Isolation and characterization of rice MADS box gene homologues and their RFLP mapping.
    DNA Res., 1999. 6(2): p. 123-9
  2. Pelaz S,Ditta GS,Baumann E,Wisman E,Yanofsky MF
    B and C floral organ identity functions require SEPALLATA MADS-box genes.
    Nature, 2000. 405(6783): p. 200-3
  3. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  4. Honma T,Goto K
    Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Nature, 2001. 409(6819): p. 525-9
  5. Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF
    APETALA1 and SEPALLATA3 interact to promote flower development.
    Plant J., 2001. 26(4): p. 385-94
  6. Prasad K,Sriram P,Kumar CS,Kushalappa K,Vijayraghavan U
    Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Dev. Genes Evol., 2001. 211(6): p. 281-90
  7. Li J,Jia D,Chen X
    HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein.
    Plant Cell, 2001. 13(10): p. 2269-81
  8. Kapoor M, et al.
    Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function.
    Plant J., 2002. 32(1): p. 115-27
  9. Ferrario S,Immink RG,Shchennikova A,Busscher-Lange J,Angenent GC
    The MADS box gene FBP2 is required for SEPALLATA function in petunia.
    Plant Cell, 2003. 15(4): p. 914-25
  10. Kotake T,Takada S,Nakahigashi K,Ohto M,Goto K
    Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes.
    Plant Cell Physiol., 2003. 44(6): p. 555-64
  11. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
  12. Hsu HF,Huang CH,Chou LT,Yang CH
    Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana.
    Plant Cell Physiol., 2003. 44(8): p. 783-94
  13. Yang Y,Xiang H,Jack T
    pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development.
    Plant J., 2003. 33(1): p. 177-88
  14. Tzeng TY,Hsiao CC,Chi PJ,Yang CH
    Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Plant Physiol., 2003. 133(3): p. 1091-101
  15. Favaro R, et al.
    MADS-box protein complexes control carpel and ovule development in Arabidopsis.
    Plant Cell, 2003. 15(11): p. 2603-11
  16. Bae MS,Cho EJ,Choi EY,Park OK
    Analysis of the Arabidopsis nuclear proteome and its response to cold stress.
    Plant J., 2003. 36(5): p. 652-63
  17. Shikata M, et al.
    Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family.
    J. Exp. Bot., 2004. 55(397): p. 631-9
  18. Shchennikova AV,Shulga OA,Immink R,Skryabin KG,Angenent GC
    Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies.
    Plant Physiol., 2004. 134(4): p. 1632-41
  19. M
    Changes in gene expression in response to altered SHL transcript levels.
    Plant Mol. Biol., 2003. 53(6): p. 805-20
  20. Lemmetyinen J, et al.
    Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch.
    Physiol Plant, 2004. 121(1): p. 149-162
  21. Fornara F, et al.
    Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes.
    Plant Physiol., 2004. 135(4): p. 2207-19
  22. Ditta G,Pinyopich A,Robles P,Pelaz S,Yanofsky MF
    The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity.
    Curr. Biol., 2004. 14(21): p. 1935-40
  23. Yang Y,Jack T
    Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.
    Plant Mol. Biol., 2004. 55(1): p. 45-59
  24. Gómez-Mena C,de Folter S,Costa MM,Angenent GC,Sablowski R
    Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.
    Development, 2005. 132(3): p. 429-38
  25. de Folter S, et al.
    Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    Plant Cell, 2005. 17(5): p. 1424-33
  26. Cseke LJ, et al.
    SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees.
    Gene, 2005. 358: p. 1-16
  27. Kaufmann K,Anfang N,Saedler H,Theissen G
    Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.
    Mol. Genet. Genomics, 2005. 274(2): p. 103-18
  28. Castillejo C,Romera-Branchat M,Pelaz S
    A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Plant J., 2005. 43(4): p. 586-96
  29. Malcomber ST,Kellogg EA
    SEPALLATA gene diversification: brave new whorls.
    Trends Plant Sci., 2005. 10(9): p. 427-35
  30. Nakahigashi K,Jasencakova Z,Schubert I,Goto K
    The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.
    Plant Cell Physiol., 2005. 46(11): p. 1747-56
  31. Teper-Bamnolker P,Samach A
    The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.
    Plant Cell, 2005. 17(10): p. 2661-75
  32. Battaglia R,Brambilla V,Colombo L,Stuitje AR,Kater MM
    Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system.
    Mech. Dev., 2006. 123(4): p. 267-76
  33. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
  34. Gregis V,Sessa A,Colombo L,Kater MM
    AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.
    Plant Cell, 2006. 18(6): p. 1373-82
  35. Guyomarc'h S, et al.
    MGOUN3: evidence for chromatin-mediated regulation of FLC expression.
    J. Exp. Bot., 2006. 57(9): p. 2111-9
  36. Sridhar VV,Surendrarao A,Liu Z
    APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
    Development, 2006. 133(16): p. 3159-66
  37. de Folter S, et al.
    A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis.
    Plant J., 2006. 47(6): p. 934-46
  38. Huang MD,Wu WL
    Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana.
    Plant Mol. Biol., 2007. 63(4): p. 557-69
  39. Zhao L,Kim Y,Dinh TT,Chen X
    miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.
    Plant J., 2007. 51(5): p. 840-9
  40. Brambilla V, et al.
    Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis.
    Plant Cell, 2007. 19(8): p. 2544-56
  41. de Folter S,Urbanus SL,van Zuijlen LG,Kaufmann K,Angenent GC
    Tagging of MADS domain proteins for chromatin immunoprecipitation.
    BMC Plant Biol., 2007. 7: p. 47
  42. Hill K,Wang H,Perry SE
    A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components.
    Plant J., 2008. 53(1): p. 172-85
  43. Gregis V,Sessa A,Colombo L,Kater MM
    AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Plant J., 2008. 56(6): p. 891-902
  44. Melzer R,Verelst W,Theissen G
    The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro.
    Nucleic Acids Res., 2009. 37(1): p. 144-57
  45. Urbanus SL, et al.
    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    BMC Plant Biol., 2009. 9: p. 5
  46. Immink RG, et al.
    SEPALLATA3: the 'glue' for MADS box transcription factor complex formation.
    Genome Biol., 2009. 10(2): p. R24
  47. Kaufmann K, et al.
    Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower.
    PLoS Biol., 2009. 7(4): p. e1000090
  48. Liu C,Xi W,Shen L,Tan C,Yu H
    Regulation of floral patterning by flowering time genes.
    Dev. Cell, 2009. 16(5): p. 711-22
  49. Chang YY,Chiu YF,Wu JW,Yang CH
    Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana.
    Plant Cell Physiol., 2009. 50(8): p. 1425-38
  50. Brambilla V,Kater M,Colombo L
    Ovule integument identity determination in Arabidopsis.
    Plant Signal Behav, 2008. 3(4): p. 246-7
  51. Liu X, et al.
    The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1401-11
  52. Marques MC, et al.
    A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus.
    BMC Genomics, 2009. 10: p. 428
  53. Urbanus SL, et al.
    Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Plant J., 2010. 63(1): p. 60-72
  54. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
  55. Matias-Hernandez L, et al.
    VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis.
    Plant Cell, 2010. 22(6): p. 1702-15
  56. Hanada K, et al.
    Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana.
    Mol. Biol. Evol., 2011. 28(1): p. 377-82
  57. Urbanus SL,Dinh QD,Angenent GC,Immink RG
    Investigation of MADS domain transcription factor dynamics in the floral meristem.
    Plant Signal Behav, 2010. 5(10): p. 1260-2
  58. Deng W, et al.
    FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(16): p. 6680-5
  59. Tsaftaris A, et al.
    The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors.
    J. Plant Physiol., 2011. 168(14): p. 1675-84
  60. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
  61. Severing EI, et al.
    Predicting the impact of alternative splicing on plant MADS domain protein function.
    PLoS ONE, 2012. 7(1): p. e30524
  62. Wu MF, et al.
    SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(9): p. 3576-81
  63. Lopez-Vernaza M, et al.
    Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF.
    PLoS ONE, 2012. 7(2): p. e30715
  64. Teaster ND, et al.
    Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana.
    Front Plant Sci, 2012. 3: p. 32
  65. Li G, et al.
    Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis.
    Plant J., 2012. 72(2): p. 261-70
  66. Zhang W,Zhang T,Wu Y,Jiang J
    Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis.
    Plant Cell, 2012. 24(7): p. 2719-31
  67. Hwan Lee J,Joon Kim J,Ahn JH
    Role of SEPALLATA3 (SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering.
    Plant Signal Behav, 2012. 7(9): p. 1151-4
  68. Krogan NT,Hogan K,Long JA
    APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
    Development, 2012. 139(22): p. 4180-90
  69. Lee S, et al.
    Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana.
    Plant Sci., 2013. 208: p. 20-7
  70. Mendes MA, et al.
    MADS domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis.
    Plant Cell, 2013. 25(7): p. 2560-72
  71. Acajjaoui S,Zubieta C
    Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3.
    Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2013. 69(Pt 9): p. 997-1000
  72. Puranik S, et al.
    Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis.
    Plant Cell, 2014. 26(9): p. 3603-15
  73. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  74. Purugganan MD,Rounsley SD,Schmidt RJ,Yanofsky MF
    Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Genetics, 1995. 140(1): p. 345-56
  75. Fan HY,Hu Y,Tudor M,Ma H
    Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins.
    Plant J., 1997. 12(5): p. 999-1010